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ABSTRACT 

A f i n i t e  difference method fo r  t he  solut ion of symmetric posi-  

t i v e  l i nea r  d i f f e r e n t i a l  equations i s  developed. The method i s  

applicable t o  any region with piecewise smooth boundaries. Methods 

for  solut ion of t he  f i n i t e  difference equations are discussed. The 

f i n i t e  difference solut ions are  shown t o  converge a t  e s sen t i a l ly  

the r a t e  

adjacent mesh points .  

O(h1I2) as h + 0, h being the  maximum distance between 

An a l t e rna te  f i n i t e  difference method i s  given with the  ad-  

vantage t h a t  the  f i n i t e  difference equations can be solved i t e r a -  

t i ve ly .  However, there  are  strong l imi ta t ions  on the mesh arrange- 

ments which can be used with t h i s  method. 

The Tricomi equation can be expressed i n  symmetric pos i t ive  

form. Admissible boundary conditions fo r  any region with piece- 

wise smooth boundaries w e  given, with a wide choice of boundary 

conditions being possible.  

A "ricomi equation with a known ana ly t ica l  solut ion is  solved 

numerically as  an i l l u s t r a t i o n  of the  numerical r e s u l t s  which can 

be obtained. There i s  strong convergence t o  the  ana ly t ica l  solu- 

t ions,  but pointwise divergence. Smoothing of t he  so lu t ion  reduces 

t h i s ,  though, and sa t i s fac tory  numerical r e s u l t s  are obtained. 
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INTRODUCTION 

In  the  theory of p a r t i a l  d i f f e ren t i a l  equations there  i s  a 

fundamental d i s t i nc t ion  between those of e l l i p t i c ,  hyperbolic and 

parabolic type. 

requirements as  t o  the boundary o r  i n i t i a l  data  which must be 

specif ied t o  assure existence and uniqueness of solut ions,  and t o  

be well  posed. 

equation of any pa r t i cu la r  type. 

numerical techniques have been developed for  solving the various 

types of p a r t i a l  d i f f e r e n t i a l  equations, subject  t o  t h e  proper 

boundary conditions, including even many nonlinear cases. However, 

f o r  equations of mixed type much l e s s  is  known, and it is  usual ly  

d i f f i c u l t  t o  know even what the  proper boundary conditions a re .  

Generally each type of equation has d i f f e ren t  

These requirements a r e  usual ly  well-known f o r  an 

Further, many ana ly t ica l  and 

A s  a s t ep  toward overcoming t h i s  problem Friedrichs [l] has 

developed a theory of symmetric pos i t ive  l i nea r  d i f f e r e n t i a l  equa- 

t ions  independent of type. Chu [ 2 ]  has shown t h a t  t h i s  theory can 

be used t o  derive f i n i t e  difference solut ions i n  two-dimensions f o r  

rectangular regions, or more generally, by means of a transformation, 

f o r  regions with four corners joined by smooth curves. I n  t h i s  

paper a more general  f i n i t e  difference method f o r  t h e  so lu t ion  of 

symmetric pos i t ive  equations i s  presented. The only r e s t r i c t i o n  on 
i 
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t h e  shape of the  region i s  tha t  t h e  boundary be piecewise smooth. 

It i s  proven t h a t  t he  f i n i t e  difference solut ion converges t o  the  

so lu t ion  of the  d i f f e r e n t i a l  equation a t  e s sen t i a l ly  the rate 

0 ( d 2 )  as h + 0, h being the m a x i m u m  distance between adjacent 

mesh points fo r  a two-dimensional region. Also weak convergence 

t o  weak solutions i s  shown. 

An a l t e rna te  f i n i t e  difference method is  given for the  two- 

dimensional case with t h e  advantage t h a t  the f i n i t e  difference 

equation can be solved i t e r a t ive ly .  However, there  a re  strong 

l imi ta t ions  on the mesh arrangements which can be used w i t h  t h i s  

xethod. 

A s  an example of the potent ia l  usefulness of the  theory of 

symmetric pos i t ive  equations, the Tricomi equation 

n, - TpYy = f ( X , Y )  

can be expressed i n  symmetric pos i t ive  form. It i s  shown tha t  

su i t ab le  boundary conditions can always be determined, regardless 

of the  shape of the  region. The problem i n  a p rac t i ca l  case is  t o  

determine an " admissible" boundary condition which corresponds t o  

avai lable  boundary information. 

A s  an i l l u s t r a t i o n  of  numerical r e s u l t s  which can be obtained 

by t h e  proposed f i n i t e  difference scheme, a Tricomi equation w i t h  

a known ana ly t ica l  solut ion i s  solved numerically. The r e s u l t s  i n -  

d ica te  tha t ,  although the re  is  strong ( i . e . ,  L2) convergence of t he  

f i n i t e  difference solut ion t o  t h e  ana ly t ica l  solution, there  i s  

pointwise divergence along the boundary. However, smoothing the  
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so lu t ion  can eliminate t h i s  problem, and s a t i s f a c t o r y  numerical 

r e s u l t s  are obtained, although rigorous mathematical j u s t i f i c a t i o n  

of t he  smoothing process i s  not given. 



CHAPTER I 

SYMMETRIC POSITIVE LINEAR DIFFERENTIAL EQUATIONS 

1.1 Basic Definit ions 

L e t  f2 be a bounded open set  i n  the  m-dimensional space of 

r e a l  numbers, Rm. The boundary of R w i l l  be denoted by an, and 

i t s  closure by E.  It is assumed t h a t  dR i s  piecewise smooth. 

A point i n  Rm 

r-dimensional vector valued function defined on R i s  given by 

u = (u1,u2, . . ., 3). Also l e t  a 1 2  ,a , . . . , am and G be 

given r X r matrix-valued functions and f = (f1,f2, . . . , f r )  

a given r dimensional vector-valued function, a l l  defined on R 

is  denoted by x = (xl,x2, . . ., %) and an 

( a t  l e a s t ) .  It is assumed t h a t  t he  ai a re  piecewise differen- 

t i a b l e .  

can use expressions such as 

For convenience, l e t  a = (u1,a2, . . ., am), so t h a t  we 

i=l 

With t h i s  notation we can write the i d e n t i t y  

m m 

i=l i=l i=l 

simply as 

v .  (UU) = ( v .  a) u + a  

4 
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With t h i s  we can give the def in i t ions  fo r  symmetric pos i t ive  

operators and admissible or semi-admissible boundary conditions 

which were introduced by Friedrichs [l]. 

L e t  K be the  f i rs t  order l i n e a r  p a r t i a l  d i f f e r e n t i a l  opera- 

t o r  defined by 

KU = a * VU + V * (au) + GU (1.31 

K i s  symmetric pos i t ive  i f  each component, ai, of a i s  symmetric 

and the  symmetric pa r t ,  ( G  +- G*)/2, of  G is  pos i t ive  de f in i t e  on 

on E .  

For the  purpose of giving su i t ab le  boundary conditions, a 

matrix, p, i s  defined (..e.) OE an by 

p = n - a  (1.4) 

where n = (nl,nz, . . ., nm) is defined t o  be t h e  outer normal 

on an. 

The boundary condition Mu = 0 on an is  semi-admissible 

i f  M = p - p, where p i s  any matrix with non-negative de f in i t e  

symmetric par t ,  

on the  boundary, an, the  boundary condition is  termed admissible. 

(h(p - p)  i s  the nu l l  space of t h e  matrix (p - p)  . ) 

( j ~  + p*)/2. If i n  addition, h,(p - p)@h,(p + p)  = R" 

The problem is  t o  f ind  a function u which satisfies 

(1.5) 
on On an 1 KU = f 

MU = 0 

where K i s  symmetric posit ive.  

It turns  out t h a t  many of t he  usual p a r t i a l  d i f f e r e n t i a l  equa- 

t ions  may be expressed i n  t h i s  symmetric pos i t ive  form, w i t h  the  
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standard boundary conditions also expressed as an admissible bound- 

ary condition. 

tic type. However, the greatest interest lies in the fact that the 

definitions are completely independent of type. An example of 

potentially great practical importance is the Tricomi equation 

which arises from the equations for transonic fluid flow. The 

Tricomi equation is of mixed type, i.e., it is hyperbolic in part 

of the region, elliptic in part, and is parabolic along the line 

between the two parts. 

This includes equations of both hyperbolic and ellip- 

The significance of the semi-admissible boundary condition 

is that this insures the uniqueness of a classical solution to 

a symmetric positive equation. On the other hand, the stronger, 

admissible boundary condition is required for existence. The 

existence of a classical solution is generally difficult to prove 

for any particular case, and depends on properties at corners of 

the region. However, it is very easy to prove existence (but cot 

uniqueness! ) of weak solutions with only semi-admissible boundary 

conditions. 

1.2 Basic Identities and Inequalities 

Let 8 be the Hilbert space of all square integrable 

r-dimensional vector-valued functions defined on R. The inner 

product is given by 

(u,v) = 4 u - v 



7 

where 

and 
2 llull = ( U , d  

A boundary inner product is defined by 

(1.7) 

(U,v)B = f u ' v 
an 

with the  corresponding norm 

(1.9) 
2 

llUllB = (',u)'B 

We introduce now the  adjoint operators and ~, which are  

defined by 

(1.10) 

(1.11) 

The re,ation between K and M and t h e i r  a,joints i s  given 

by Friedrichs "first  ident i ty ."  

Lema 1.1 If K is symmetric posi t ive,  then 

(v,Ku) + (v,Mu)B= (@v,u) + (I@v,u)B (1.12) 

Proof - The proof follows from Green's Theorem. By def in i t ion  we 

have 



(v,Ku) - (K*v,u) = 4 v (a Vu) + v (V * (au)) + v Gu 

+ 4 (a mZ) u + (V (av)) - u - G*v u 

s ince  the ai are symmetric. Therefore 

by Green's Theorem, and s ince p = n a. Fina l ly  

which proves the  lemma. 

The "first  ident i ty"  can now be used t o  obtain Fr iedr ichs  

second iden t i ty  . ' I  

Lemma 1 . 2  I f  K is  symmetric posi t ive,  then 

(u,Ku) + (u,Mu)B = (u,Gu) + (u,Mu)B (1.13) 

Proof - It follows from the  def in i t ions  of K? and I@ t ha t  

K + = G + G* and M + fl = p + p*; hence, l e t t i n g  v = u i n  

t he  "first  ident i ty ,"  we obtain 

- 
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G t G* 

B 
= (u,Gu) + (U,IU)B 

The ''second identity" immediately yields an inequality which 

wili give us an a priori bound and insure uniqueness of any 

classical solution to a symmetric positive equation with semi- 

admissible boundary conditions. 

Lemma 1.3 Suppose u is a solution to (1.5) where M is 

semi-admissible. Let hG be the smallest eigenvalue of 

(G + G*)/2 in R .  Then 
- 

(1.14) 

Proof - Since K 
llu112 s (U,G~)/A~. 

definite by the assumption of the semi-admissible boundary condi- 

is symmetric positive, h~ > 0, and therefore 

using Lemma 1.2, since p + p* is non-negative 

tion, we have 

since Mu = 0, so that 

One other inequality can be obtained f o r  llullB by assuming 

that p + p* is positive definite. 

Lemma 1.4 Let u satisfy equation (1.5) where M is semi- 

admissible. Further, assume that (p + p*)/2 is positive definite 

on as2 with smallest eigenvalue . Then hP 
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Proof - From the hy-pothesis, 

(1.15) 

by Lemma 1.3. 

1.3 Uniqueness of a C1 Solution 

L e m  1.3 insures t h e  uniqueness of a c l a s s i c a l  solution, and 

for homogeneous boundary condi- a l so  t h a t  it i s  w e l l  posed i n  L2 

t ions .  

Theorem 1.1 If uECl(0) s a t i s f i e s  equation (1.5) where M i s  

semi-admissible, then u is t h e  unique solut ion t o  (1.5).  Further 

(1.5) is  well posed i n  the sense that  f o r  any 

a 6 > 0 such t h a t  i f  f i s  replaced by fE i n  (1.5) with 

[IfE - fll < 6, and i f  a solution 

Proof - Suppose t h a t  

K(u - v) = 0, M(u - v) = 0 

Ilu - vll = 0. 

E > 0 there  ex i s t s  

I+ s t i l l  ex i s t s ,  then 11% - ull< E.  

v€C,(.Q) is any solut ion of (1.5), then 

i s  semi-admissible and by Lemma 1.3, 

For the  second par t  l e t  6 = AGE, then 

K( u, - U) = f, - f ,  M(Q - U) = 0, 

hence 

Actually piecewise d i f f e r e n t i a b i l i t y  of u i s  adequate f o r  

t he  above theorem provided u is  continuous. This follows eas i ly  
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I .  
i 

I 

since,  when Greenfs theorem i s  applied, t he  values of u along the 

d iscont inui t ies  of the derivative w i l l  cancel, providing us with 

a l l  t he  previous r e s u l t s .  

1 .4  Weak and Strong Solutions 

By widening the  c lass  of solut ions t o  (1.5) t o  include weak 

solut ions it i s  qui te  easy t o  prove existence of a so lu t ion  t o  a 

sybmetric pos i t ive  equation under only semi -admissible boundary 

con?iitions. We w i l l  use Friedrichs '  def in i t ion  of weak solut ion.  

Let V = Cl(S2) n(vlM% A function u d  (defined i n  

sec t ion  1 . 2 )  i s  a weak solution of (1.5) i f  fd and f o r  a l l  VEV 

0 on ail... 

(v,f) = ( P v , u )  (1.16) 

It follows from t h e  "first identity" (1 .12)  t h a t  a c l a s s i c a l  s o h -  

t i o n  i s  a l so  a weak solution. 

Theorem1.2 If M i s  semi-admissible, there  ex i s t s  a weak so lu t ion  

-to (1.5). 

Proof - L e t  f l b e  the  subspace of a l l  functions 

w i t h  VEV. Since i s  syrmetric pos i t ive  and M* i s  s e m i -  

* w, where w = K v 

admissible, Theorem 1.1 implies t h a t  v i s  unique f o r  any given 

w. 

Lf, defined o n x c  A by 

Hence, fo r  any f ixed fd, w e  can define a l i n e a r  funct ional  

L f ( W )  = (v,f) * 

This l i n e a r  functional i s  bounded, s ince 

by Lema 1.3 applied t o  K? and I@. By the  Hahn-Banach theorem 
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Lf 

theorem there  i s  a u d  such tha t  

can be extended t o  a l l  of A, and by the  R i e s z  representat ion 

(v,f) = (w,u) 

which proves the  theorem. 

This only shows t h a t  u d ,  however, i f  u€C1(R), we see from 

Lemma 1.1 t h a t  

(v,Ku) + (v,MU)B = (Iccv,~) + (Pv,u) 
= (v,f) fo r  a l l  VEV. 

Hence (v,Ku - f )  = 0 if v = 0 on 30, s o  t h a t  we must have 

Ku = f i n  R .  This i n  tu rn  shows t h a t  (v ,Mu)~ must be zero. 

Fr iedr ichs [l! shows t h a t  if, i n  addition, M i s  admissible, then 

Mu = 0. The conclusion then is  t h a t  a weak so lu t ion  which s a t i s -  

f i e d  admissible boundary conditions and i s  continuously d i f f e ren t i a -  

ab le  is also a c l a s s i c a l  solution t o  (1.5). 

A function u d  i s  a strong so lu t ion  t o  (1.5) if there ex i s t s  

a sequence {ui) of functions such t h a t  each ui€C1(R) and 

Variations of the  def ini t ions of weak and strong solut ions a r e  

common (c f .  Sarason [ 3 ] ) .  

weak solut ion i s  different iable;  it is ,  however, possible,  under 

ce r t a in  addi t ional  hypotheses, t o  show t h a t  a weak solut ion i s  a l s o  

a strong solution. One hypothesis used by F’riedrichs [l] is  t h a t  

a R  has a continuous normal. Sarason [3] considers the case where 

dR i s  of c lass  C2. Sarason a l so  considers t he  two-dimensional 

In  general  it is  not known whether a 
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case with corners, which requires special  conditions t o  be s a t i s -  

f i e d  a t  the  corners. 

Sarason [ 31, Lax and Ph i l l i p s  [41, and Ph i l l i p s  and Sarason [ 5 ]  . 
1.5 A Simple &ample 

Other "weak=strong" theorems are given i n  

An i l l u s t r a t i o n  of the types of boundary conditions with more 

o r  less boundary da ta  than usual can be given by means of a one- 

dimensional example. Suppose tha t  

If we write K i n  self adjoint form 

(1.17) 

we have a = x and G = 1, s o  tha t  K i s  pos i t ive  symmetric. A t  

x = -1, p = na = -x, and we can l e t  

M = p - p = 0 and no boundary condition is  imposed a t  x = -1. 

A t  

and no boundary condition i s  necessary a t  the  r i g h t  end e i ther .  

Thus, far equation (1.17), no boundary condition a t  a l l  i s  an 

admissible boundary condition! 

calculate  the solut ion t o  ( 1 . 1 7 ) .  Since Ku = 2 d(xu)/.dx = 0, we 

have xu = e, as  t he  general solution. However, t he  theory i s  con- 

cerned only w i t h  solutions i n  L2(-l,l), and 

integrable  only fo r  c = 0, s o  w e  do indeed have a unique solut ion 

i n  

p = l p l  = -x. Hence 

x = 1, p = x, and le t t ing p = I P I ,  w e  have again that M = 0, 

To see t h a t  t h i s  i s  so, we can 

u = c / x  i s  square 

2 L (-1,l) without specifying any boundary data  a t  a l l .  

A simple example can also be given of an ordinary d i f f e r e n t i a l  

equation which requires  more boundary data  than usual.  For t h i s  l e t  
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I n  s e l f  ad jo in t  form 

du d(xu) 
d x d x  

K u = - x - - - ~ u  

(1.18) 

so tha t  a = -x and G = 1. In t h i s  case i f  we make p = l p l ,  

we g e t  p = -p, s o  t ha t  M = p - ~3 = 2 ,  a t  both x = 1, and 

x = -1. Hence, boundary data must be spec i f ied  a t  both end 

points  fo r  admissible boundary conditions. Again, we can check 

t h i s  by solving the  equation. The general  solut ion t o  (1.18) is 

u = log 1x1 + c 
I 

Since 1 log2 x < 6 we see that  we have a va l id  so lu t ion  for  
0 

any c. Also, because of t he  s ingular i ty  a t  x = 0, we can 

specify the value of u a t  both x = 1 and x = -1. 



CHAPTER I1 

FINITE DIFFERENCE SOLUTION OF SYMMETRIC POSITIVE 

DIFFERENTIAL EQUATIONS 

2 . 1  F i n i t e  Difference Approximation t o  K and M 

F i r s t  we w i l l  express K i n  a form s l i g h t l y  d i f f e ren t  from 

(1.3), by the use of (1 .2 ) .  We have 

KU = a VU -t V (au) + GU 

= 2V * (a~) - (V * a,) u + GU ( 8 . 1 )  

Using the  concept of vectors whose components a re  themselves 

matrices or vectors  leads t o  somewhat simpler notat ion f o r  t h e  

appl icat ion of Green's theorem. 

Lemma 2 . 1  (Green's Theorem) Let g be a continuously d i f f e ren t i a -  

b l e  m-dimensional vector-valued function defined on R c Rm, with 

vector components i n  e i the r  R, Rr o r  Rr X Rr. Then 

Proof - Consider the case when g has matrix components, i . e . ,  

g =. (g ,g , . . ., gm) where gi = (gi ) i s  an r X r matrix. 

Then 

1 2  
j ,k  

15 
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i s  a matrix. U s i n g  the  subscript  j , k  t o  ind ica te  the  element i n  

t h e  jth row and kth column, we have 

(using obvious notation) ; therefore 

Similarly,  the  r e s u l t  holds when g has vector components, SO 

t he  lemma is  proved. 

We now in tegra te  t h e  equation Ku = f over any region P C R 

using (2.1)  and Green's theorem t o  obtain 

(V a > u  + Gu = 4 f (2 -3) 

By a su i t ab le  approximation t o  (2.3) t he  desired f i n i t e  difference 

equations w i l l  be obtained. 

Let H be a se t  of N mesh points  f o r  R .  It i s  not required 

f o r  t he  theory t h a t  t he  mesh points a l l  l i e  i n  R .  With each mesh 

point  x.EH we i den t i fy  a mesh region, P j  c i2 by J 
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If Pj i s  adjacent t o  pk we say tha t  x i s  connected t o  xk 

(corresponding t o  the f a c t  that  the  directed graph of t h e  r e su l t i ng  

matrix w i l l  have a directed path i n  both direct ions between j and 

k, see p. 16, [SI). L e t  2 j ,k  = J x j  - xkl, where x i s  connected 

t o  Xk, and l e t  h = IDaX 2j,k. Now define A j  t o  be the  "volume" 

of Pj and Lj,k t o  be the  "area" of the  r - 1 dimensional 

llsurface'l between P and pk. We put Tj,k = pj  n i?k. Figure 1 

j 

- 
j 

i l l u s t r a t e s  mesh points and corresponding mesh regions for  two 

dimensions. This concept of mesh regions i s  based on the  sugges- 

t i ons  of MacNeal 171. 

ca te  a sum over a l l  points, x5, i n  

over points,  xk, which a re  connected t o  some one point,  x j .  

We w i l l  always use the  notat ion 

H, and 

t o  ind i -  
J 

t o  ind ica te  a sum 

The desired f i n i t e  difference equation can now be obtained by 

a su i t ab le  approximation t o  equation ( 2 . 3 ) .  We use t h e  symbol 

t o  indicate  the  d iscre te  approximation t h a t  w i l l  be used f o r  each 

expression. F i r s t  

where u = u(xj) and pj,k is the  value of p fo r  Pj a t  t h e  

center of r j , k .  (Mote t h a t  pj,k = - pk, j ) .  The approximation 

t o  the  next term of equation ( 2 . 3 )  requires  approximating 

j 

u with 

u j  
a,. With t h i s  we obtain 

f irst ,  and then applying Green's theorem before approximating 



R 

Figure 1. - Typical mesh regions in the two-dimensional case. 
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The f i n a l  approximation i s  then 

Equations (2.4) and (2.6) take care of the  in tegra t ion  over the  

in t e r f ace  between any Pj and Pk' Now we need t o  make an approxi- 

mation fo r  t he  boundary s ides .  It w i l l  be convenient t o  be able 

t o  subdivide P. n a0 i n t o  more than one piece. W e  w i l l  l a b e l  

and we w i l l  use the convention t h a t  w i l l  each piece 

mean a summation over t he  B for  j u s t  one j .  We use 

denote the  distance from x j  t o  XB, where XB i s  located a t  the 

- 
J 

5 , B  B 
to 

2 j , B  

I 1  is  used for the  "areat1 of 

This notation is  indicated for the  two- 

r'j,B. center" of r j , B  and 'j,B 

Also pj,B = p(x,). 

dimensional case i n  Figure 1. The desired approximations a r e  now 

given by 

Final ly  the remaining terms i n  equation ( 2 . 3 )  a r e  approximated by 

J Gu f A.G.u J J j  (2.9) 

'j 
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(2.10) 

(2.11) 

J 

where 

which w i l l  approximate K. U s i n g  approximations (2 .4)  t o  (2 .11)  

i n  equation ( 2 . 3 )  we a r r ive  at t h e  following def in i t ion  of 

Kh i s  the  f i n i t e  difference operator t o  be defined and 

Kh, 

- L Lj,kfij,kuj - L Lj,Bpj,B'j + *jGjuj 
k B 

- 
where u here denotes a d iscre te  function defined on H = H U@a, 

and u j  = u ( x j ) .  We w i l l  s e e k  t o  f ind  a function defined on H 
- 

for every x.EH. O f  course the  solut ion a and sa t i s fy ing  ( K  h u)  j = f j  

i s  not y e t  uniquely determined: s ince  there  a re  more unknowns than 

equations. The boundary condition Mu = 0 w i l l  furnish us with 

t h e  necessary information t o  determine u uniquely on H (but  not 

necessar i ly  on d l  of Z). 

Using Mh t o  denote t h e  boundary operator used t o  approximate 

M, we make t h e  following def ini t ion 

(%u) j , B  = pj,Buj - Pj,B(2uB - U j )  (2.13) 



2 1  

for  a l l  j where Pj i s  a boundary polygon, and f o r  a l l  boundary 

surfaces of P .  (each of which is  associated w i t h  a point xb) . It 

i s  easily seen t h a t  Mh is  consistent with M ( i . e . ,  ( $ u ) j , ~ - +  

M u ( x ~ , ~ )  as h -+ 0 if u i s  continuous). The reason fo r  t h i s  

choice of I$,., is  t h a t  t he  condition %u = 0 can be used t o  

eliminate uB i n  Khu i n  a simple manner, and a l s o  we w i l l  be able  

t o  prove basic  i d e n t i t i e s  fo r  t h e  f i n i t e  difference operators 

analogous t o  those for the  continuous operators (eqs. (1 .12)  

and (1.13)). 

2.2 Basic I d e n t i t i e s  f o r  t h e  F i n i t e  Difference Operators 

J 

The existence and uniqueness of a solut ion t o  the  f i n i t e  

difference equation and the  convergence t o  a continuous solut ion 

as h -+ 0 depends on proving the  basic  i d e n t i t i e s  fo r  the  d i s -  

crete operators. L e t  &, be the  f i n i t e  dimensional Hilber t  space 

of d i sc re t e  functions defined on H. The inner product is  given by 

(u,v)h = 1 Ajuj vj,xj€H (2.14)  
j 

and 

2 
llUllh = (',u)h 

Also a "boundary" inner product i s  given by 

f o r  Pj a boundary mesh region, and 

(2.15) 

(2.16) 

(2.17) 
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The d i sc re t e  adjoint  operators and a re  defmned i n  

the  obvious way, 

(2.19) 

We can now give the  "first identity" fo r  the d iscre te  operators. 

- 
f o r  any functions u,v defined on H. 

Proof - - Using the  def ini t ions,  equations (2.12)  and (2.18), we have 

k 

P 7 

By rearrangement, since Pj,k= -Pj,k, and s ince pj,, i s  symmetric 

we have 
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and we see t h a t  a l l  terms cancel with the  exception of t he  boundary 

On the  other hand, using equations ( 2 . 1 3 )  and (2.19) 

which i s  the same as the  r igh t  s ide  of ( 2 . 2 1 ) .  

ident i ty"  fo r  t he  difference operators i s  proved. 

Hence t h e  "first 

The d i sc re t e  operators have been defined so t h a t  % + % =  
G + G* and % + = p + p*. By l e t t i n g  v = u i n  (2 .20)  we 

can prove the  d i sc re t e  "second ident i ty"  exactly as  fo r  t he  con- 

tinuous case (Lemma 1 . 2 ) .  

Lemma 2 . 3  If K i s  symmetric posi t ive,  then 

(2.22)  

2 . 3  Existence of Solution t o  F in i t e  Difference Equations 

Using equation (2 .13)  and %u = 0 w e  can eliminate uB from 

equation ( 2 . 1 2 )  s o  t h a t  t h e  equation Khu = f can be reduced t o  
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If we consider t he  case when R 

and the  P 

t h e  f i n i t e  difference equation obtained by Chu [2] .  

obtained by Chu is the  same as (2.23) for i n t e r i o r  rectangles ,  but 

i s  two-dimensional and rectangular,  

are all equal rectangles,  we can compare (2.23) with 

The equation 

j 

i s  d i f f e ren t  f o r  boundary rectangles.  

L e t  A be the  r N  X r N  matrix of coef f ic ien ts  of ( 2 . 2 3 ) .  

Let t ing (u,v) = ,c u * v , the ordinary vector  inner product, we 
j i j  J 

have 

(2.24) a, (G,Au) = (uJKhlJ)h + ('J,MnlJ) 

Hence, by the  "second ident i ty"  (2.22),  A has pos i t ive  

d e f i n i t e  symmetric p a r t  which shows t h a t  A i s  n o n - s i n g l a r .  We 

can a l so  obtain an a p r i o r i  bound fo r  

tinuous case. 

llullh j u s t  as i n  the con- 

Lemma 2.4 Suppose u is  a solut ion t o  

KhU f ,  MhU = 0 

where K i s  symmetric posi t ive and M is  semi-admissible. Then 

If i n  addition, (p + p*) is  posi t ive de f in i t e  on an, then 

(2.26) 



25 

Proof - The proof is identical to 
but using the h norms and inner 

that f o r  Lemmas 1.3.and 1.4, 

products. 

2.4 Convergence of the Finite Difference Solution to a 

Continuous Solution 

It is possible to show that the solution of the finite differ- 

ence equation (2.23) converges strongly to a continuously differ- 

entiable solution of equation (1.5), under the proper hypQtheses. 

For simplicity we prove convergence only for the case when 

two-dimensional (m = 2). 

S l  is 

Extension to regions in higher dimen- 

sions, with the same rate of convergence, follows directly. To 

allow the type of comparison we wish to make we will define 

operators mapping A into Ah and vice versa. Let rh: d +Ah 
be-the projection defined by 

(rhuIj = u(x.) for all X . E H  (2.27) 
J J 

In the other direction, l e t  ph: % + d be an injection mapping 

defined by 

j p u (x) = ( u ~ ) ~ ,  for all XEP h h  

We immediately have the following relations, 

'hph = I 

(2.28) 

(2.29) 

(2 .30)  

We can now state our basic convergence theorem for two-dimensional 

regions. 

Theorem 2.1 Suppose that u€C2 ( E )  satisfies 

KU = f on R C R ~  

Mu = 0 on ai2 



where K i s  symmetric posit ive,  and IJ- + IJ-* i s  pos i t ive  de f in i t e  

on &a. For any given h >  0, l e t  Hh be a s e t  of associated 

mesh points such t h a t  t h e  m a x i m u m  distance between connected 

nodes i s  l e s s  than h and also t h a t  Lj,k, Lj,B and Ix - xjI 
1' 

f o r  xePj a re  a l l  l e s s  than h. It i s  assumed t h a t  the  mesh i s  

s u f f i c i e n t l y  regular so  t h a t  h2/Aj f o r  eakh P j  i s  bounded 

independently of h by a constant K 1  > 0, which i s  possible fo r  

s u f f i c i e n t l y  nice regions. Also it i s  assumed t h a t  a uniform 

rectangular mesh is  used fo r  all 

distance greater  than K2h from an, where K2 i s  a posi t ive 

constant.  It i s  assumed t h a t  a€C2(c). 

Pj any point of which is  a t  a 

Chu [ 2 ]  proved convergence of h i s  f i n i t e  difference scheme, 

where R i s  a rectangle o r  a region with four corners, but the  

r a t e  of convergence was not established. 

Proof - Define wh = uh - rhu. Let be the smallest  eigen- 

value of 

we have 

llwhllt<L k 
Using the  

(G .+ ,G*)/2 i n  5. Using the  "second ident i ty"  ( 2 . 2 2 ) ,  

r- -7 

Cauchy-Schwartz inequality,  we have 
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We w i l l  show t h a t  llKhWh/lh = O(h1I2) and IlM W ( 1  
We s h a l l  need t h e  following lema. 

Lemma 2.5 Let g be a function defined on a f i n i t e  region P C R 2 ,  

and suppose t h a t  g s a t i s f i e s  a Lipschitz condition, i . e . ,  there  

i s  a constant K3  > 0 such t h a t  lg (x)  - g(y ) l  I K31x yI ,  

for  a l l  x, YEP. Then, if A, i s  the  area of P and Ix -xol 5 h 

= O(h) , as h 4 0.  
h h a ,  

i n  P, 

Proof - By d i r e c t  ca lcu la t ion  - 

We proceed now with t h e  proof of t h e  theorem. L e t  Ql denote 

t h a t  port ion of Q consisting of those Pj which are rectangular,  

and l e t  Q2 

see t h a t  t h e  area of Q2 i s  less than the  length of &I times 

denote the  rest of t h e  P j .  From the hypothesis we 

K2h. We have now t h a t  

(2.32) 
where 



2 8  

To simplify notation w e  w i l l  use u for u(x.) and uB for u(xB) . 
We now obtain a s u i t a b l e  bound f o r  

J 

IKu(xj) - (Khrhu)j[ 

Consider t he  first term i n  t h e  last expression above 

7 

( 2 . 3 4 )  
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By Lemma, 2.5, s ince cc and u€C2(c) imply t h a t  t h e i r  der ivat ives  

s a t i s f y  a Lipschitz condition, 

We consider now the  case when j€J1, s o  t h a t  Pj is  a 

rectangle  with x j  a t  the  center.  

Since uS2(52), we have 

(2.35) 

where t h e  der ivat ives  are d i rec t iona l  der ivat ives  i n  t h e  d i rec t ion  

xk - x Hence, i f  Iu"I < K3 i n  Q, we have 3' 

This means t h a t  

(2.36) 

when j E J1. 

We now examine a Taylor s e r i e s  expansion f o r  pu about t he  

point  xj,k =(x j  + xk)/2. 
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Using (2.37) we obtain the  following bound, 

' (2.. 38) 

Now, using ( 2 . 3 5 ) ,  (2.36) and ( 2 . 3 8 )  i n  (2.34) we obtain 

k J  

for a l l  j€Jl, s ince  h2/Aj 5 K1 and t h e  boundary terms a r e  not 

present .  

Consider now t h e  second t e r m  on - 'the r i g h t  of (2.33) : 



31 

I .  

' .  

By Lemma 2 .5  

(2.41) 

N e x t ,  s ince 

a l l  

u satisfies a Lipschitz condition, Ix - xjl < h fo r  

x€Pj , and s ince  IIV all i s  uniformly bounded i n  Q , we have 

(2.42) 

a r e  each evaluated a t  t he  midpoint 
j J B  

and p 
j Jk Final ly ,  s ince p 

Of r j J k  

analysis  , as i n  deriving equation (2 .38)  , t o  obtain 

or r j , ~ ,  respectively, we can use a Twlor s e r i e s  

1 
A 
j 

=O(h) (2.43) 

Combining (2.41) , (2.42) , and (2.43) i n  (2.40) we obtain 
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Note t h a t  (2.44) holds for a l l  j ,  not j u s t  f o r  j€J1. 

W e  can now subs t i t u t e  (2.39) and (2.44) i n  (2 .33)  t o  obtain 

I K U ( X j )  - (KhrhU)jl = O(h) fo r  a l l  j E J 1  (2.45) 

We cannot obtain as  good a bound f o r  J K U ( X ~ )  - (KhrhU) I 
i s  not i n  general 5 ,k when 

bisected by the  l i n e  between x j  and xk. However, we can show 

t h a t  IKu(xj) - (Khr,u) . I  i s  uniformly bounded f o r  

i s  adequate s ince the  area of 02 is  of order h.  The two in -  

equa l i t i e s  which must be re-examined a re  (2 .36)  and (2.38).  

j€Jz, although (2.44) holds, s ince 

j E J 2 ,  which 
J 

We now have, s ince u and (gu) s a t i s f y  Lipschitz conditions, t h a t  

(2.46) 

Using t h i s ,  with the  other resu l t s  which s t i l l  hold, we see t h a t  

I h ( X j  ) - (KhrhU)j I i s  uniformly bounded fo r  

Using t h i s ,  together with (2.45) i n  (2 .32 )  we obtain 

j E  J2 ,  as h + 0. 

2 
IIKhWhllz = O(h + O(h) (2.48) 

s o  t h a t  
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s ince  b$.ph = 0. Now 

bounded. This shows t h a t  

I I %rhuI I = O(h2), 

s ince >: L ~ , ~  i s  simply the  iengtn of d.0. Tnis proves t h a t  
j , B  

Using (2.49) and (2.50) i n  ( 2 . 3 1 ) ,  w e  see  t h a t  

(2.51) 

From Lemma 2.4, Ilw 11 must be bounded, s ince 

which i s  cer ta in ly  uniformly bounded as  h 3 0.  Likewise ~ ~ w h ~ ~ h  i s  

bounded. So from ( 2 . 5 1 )  we have 

llwhllh = 0(h114) (2 .52 )  

However, i f  we use (2.52)  i n  ( 2 . 5 1 )  we ge t  (I%llh = 0(h3/8), or by 

repeating t h i s  procedure enough t i m e s ,  

llwhih = O(hv), f o r  any pos i t ive  v < 1/2  ( 2 . 5 3 )  
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Finally,  we es tab l i sh  the convergence r a t e  for llph% - uII. 

Using (2.53)  and (2.55) i n  (2.54) we g e t  

llphuh -uII =O(hv) + O(h) = O(hv),  for any pos i t ive  v < 1 / 2 '  

This c w p l e t e s  the  proof of  Theorem ( 2 . 1 ) .  

2 . 5  Solution of t h e  F i n i t e  Difference Equation 

For our method t o  be of prac t ica l  use we must have some 

(2.55)  

(2.56) 

method f o r  computing the  solution t o  t h e  f i n i t e  difference equa- 

t i o n  ( 2 . 2 3 ) .  

here. 

t r idiagonal .  

l i n e s  such t h a t  the  mesh points on any one l i n e  a r e  connected 

only t o  points on t h e  same l ine  or  adjacent l i nes .  Then we can 

p a r t i t i o n  A i n t o  blocks corresponding t o  each l i n e .  The diagonal 

blocks w i l l  themselves be block t r id iagonal  with r X r blocks. 

The matrix equation can then be  solved by the block t r idiagonal  

algorithm ([8] and [ 6 ] ,  p. 1 9 6 ) .  We suppose A t o  be wr i t ten  i n  

the form, 

We will consider only the  two-dimensional case 

I n  any case we can pa r t i t i on  t h e  matrix A so as t o  be block 

For example, suppose t h a t  the  mesh points  H l i e  on 
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A =  ( 2 . 5 7 )  

where NL i s  the  number of l i nes .  Each Bi i s  an rn  x r n  

block t r id iagonalmat r ix ,  where n i s  the  number of points  on 

t h e  ith l i n e .  From equation ( 2 . 2 3 )  s ince pJ,k = - p k j j  we  see 

t h a t  A. = CY Thus Ci need not be s tored  fo r  a computer 

solut ion.  

1 1-1' 

The block t r idiagonal  algorithm i s  completely analogous 

t o  the  ordinary t r id iagonal  algorithm. Suppose the  equation t o  be 

solved i s  Au = f ,  where u and f are par t i t ioned* as required.  

A typ ica l  block equation is  

W1 = B1 

Y1 = fl 

The forward sweep i s  given by 

1 = A.WT1 Gi 1 1-1 

yi - - f i  - Giyi,l } f o r  i = 2,3, . . ., Nz 

This is  followed by the  backward sweep. F i r s t ,  
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- Ciui+l) f o r  i = NL - 1, NL - 2, . . ., 1 ui = wi -1 (yi 

O f  course t h i s  algorithm w i l l  not work f o r  every non-singular 

block t r id iagonal  matrix. However, Schecter [SI,  gives a s u f f i -  

c i en t  condition f o r  t he  va l id i ty  of the algorithm, and that i s  

simply t h a t  A has d e f i n i t e  symmetric pa r t .  

t h a t  A has pos i t ive  d e f i n i t e  symmetric pa r t .  

disadvantage t o  the  mbthod, however, and t h a t  i s  the  f a c t  t h a t  

We have already shown 

There is  one r e a l  

each W;' 

sweep f o r  use on the backward sweep. 

pu ter  s torage requirements, and t h e  use of tapes  or  disks f o r  

temporary s torage fo r  only a moderate number of mesh points .  

of course, is very time consuming. An a l t e r n a t e  procedure is  

suggested by Schecter [ 8 ] .  

need be inverted and s tored f o r  a number of consecutive l i n e s  

with an equal number of points per  l i n e .  However, t h e  matrix 

t o  be inverted may be i l l -condi t ioned i f  too  many l i n e s  a r e  grouped 

i n  t h i s  way. 

is  a full matrix and must be s tored  during t h e  forward 

This r e s u l t s  i n  l a rge  com- 

This, 

I n  Schecter ' s  method only one matrix 

An a l t e rna te  method of solut ion may be possible  i n  some cases.  

Note t h a t  A may be decomposed as 

A = D + S  

where D is  Hermitian and posi t ive de f in i t e ,  and S i s  skew 

symmetric. The eigenvalues of D are usual ly  easy t o  ca lcu la te  

s ince D is  block diagonal with r X r blocks. If t h e  smallest  
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eigenvalue, AD, of D 

of S, we w i l l  have 

i s  larger  than the  spec t ra l  radius,  p(S) ,  

I n  t h i s  case we could use the following i t e r a t i v e  method. 

u(O) be a rb i t ra ry ,  and define u ( ~ )  recursively by 

Let 

,(i) = -su (i-1) + 'r 

In  t h i s  case l i m  u ( ~ )  = u. I n  general ,  though, t he  eigenvalues of 
i- 

D w i l l  not a l l  be suf f ic ien t ly  l a rge  for t h i s  simple method t o  

work. However, t he  or ig ina l  f i n i t e  difference equations can be 

modified i n  some cases by the addi t ion of a "viscosity" t e r m ,  s o  

as  obtain a convergent i t e r a t i v e  procedure f o r  t h e  solut ion of t h e  

matrix equation. 

2.6 Convergence t o  a Weak Solution 

This w i l l  be discussed fur ther  i n  Chapter 111. 

We can consider t h e  d iscre te  analogue of a weak solution. L e t  

Vh be t h e  s e t  of d i sc re t e  functions, vh, defined on ii and 

sa t i s fy ing  MEvh = 0.  For  a d i sc re t e  weak solution, uh, we would 

Form t he  " f i r s t  ident i ty"  (2 .20)  we have then 

We see from t h i s  t h a t  (Khuh)j = f j  f o r  a l l  Pj which are not on 

the  boundary, by choosing (v  ) = 1, and = 0 fo r  k # j .  

Because of the d i sc re t e  nature of t he  equations we a re  not assured 

h j  
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of uh sa t i s fy ing  t h e  boundary conditions. However, conversely, 

i f  uh satisfies Khuh = rhf  and $uh = 0 we see imeediately 

tha t  (2.58) must be sa t i s f i ed .  

Chu [2] has shown weak convergence of h i s  f i n i t e  difference 

solut ion t o  a weak solut ion of a symmetric pos i t ive  equation and 

Cea [ 9 ]  has invest igated generally the question of weak o r  strong 

convergence of approximate solutions t o  weak solut ions of e l l i p t i c  

equations. Using these ideas, we can prove weak convergence of our 

f i n i t e  difference solut ions t o  weak solut ions of symmetric 

pos i t ive  equations. 

Theorec: 2.2 For any h >  0, l e t  !ih be a set, of mesh points  

sa t i s fy ing  t h e  requirements of Theorem 2 .1 .  It i s  assumed t h a t  

a€C2(E). L e t  uh be t h e  unique solut ion t o  

If ( h r  i=l 
(phiuhT 

weak solution, u, of equation (1.5) ,  t h a t  i s  

is a pos i t ive  sequence converging t o  zero, then 

has a subsequence which converges weakly i n  H t o  a 
i=l 

(K%,u> = (v , f )  f o r  a l l  VEV 

Furthermore, i f  u is a unique weak solution, then 
i=l 

converges weakly t o  u. 
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i .  

fibof - F i r s t  we note t h a t  llPhuh11 is  bounded, s ince 

1 
llp'huhll = 11uhllh 2 Ilrhfllh, by LeIma 2.4. Hence, there  i s  a Sub- 

sequence of {phiuhi) t h a t  converges weakly t o  some u d .  

Theorem 4.41-13, Taylor [lo]. ) 

(See 

For convenience of notation we w i l l  

However, s ince PVE JJ, we know t h a t  l i m  (&,phuh) = (K%,u) 
k*O 

We have shown, then, t ha t  

l i m  (Qhv,%)h = (Pv,~),  f o r  a l l  VEV. 
h 0  

(2.61) 

The d i sc re t e  "first identity",  equation (2.20),  gives 
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Also, the proof of equation (2.50) shows that lim IlI@r v(1 = 0,  
k*o h a ,  

Further, it is obvious that 

Combining (2.61), (2.64) and (2.65) gives 

(K*v,u) = (v,f), for a l l  vevY 

which cmpletes the proof of the theorem. 

(2.64) 

(2.65) 

I 
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CHAPTER I11 

SPZIAI; FINITE DIFFERENCE SCHEME FOR ITEBATIVE 

SOLUTION OF MATRIX EQUATION 

3.1 Special  F i n i t e  Difference Scheme 

A s  pointed out i n  section 2.5,  t h e  matrix equation Au = f 

can be solved by an i t e r a t i v e  procedure i f  the eigenvalues of t h e  

diagonal coef f ic ien t  matrix are s u f f i c i e n t l y  l a rge  compared t o  t h e  

eigenvalues of t h e  off-diagonal coef f ic ien t  matrix. Following the  

idea of Chu [ Z ] ,  we modi* the f i n i t e  difference equation by adding 

a l lviscosity" term which w i l l  have a diminishing e f f ec t  on t h e  f i -  

n i t e  difference equations as h+O, and ye t  w i l l  assure the  conver- 

gence of an i t e r a t i v e  method. Unfortunately, t he  method is  not 

applicable t o  every arrangement of mesh points .  

r a the r  severe r e s t r i c t i o n s  which must be met. The f i rs t  require-  

ment i s  t h a t  t h e  difference in  areas of adjacent mesh regions be 

su f f i c i en t ly  small. This cannot be readi ly  done along an i r r egu la r  

boundary, however, unless the boundary i s  modified. A problem 

arises if t h e  boundary i s  modified. The boundary condition i s  

given by Mu = (p - p)u = 0 on an. We need t o  extend M t o  be 

defined i n  a neighborhood of the  boundary. 

In  f a c t  there  a r e  

It i s  possible t o  

41 
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extend M continuously i n  a neighborhood of t he  boundary. How- 

ever, if the  d i rec t ion  of t h e  boundary changes, $ changes 

dras t ica l ly ,  and we have no assurance t h a t  u w i l l  be pos i t ive  

de f in i t e .  The second requirement then i s  tha t  M can be extended 

continuously over a neighborhood of the boundary, i n  such a way 

t h a t  p w i l l  have pos i t ive  def in i te  symmetric p a r t  along the  

approximating boundary. 

Let ah be an approximation t o  0 .  ah  w i l l  have t o  meet 

several requirements t o  be specified l a t e r .  

of mesh points associated w i t h  ah  and with m a x i m u m  distance h 

between connected nodes, and iih w i i i  denote Hh u (xB}. 

d i sc re t e  inner product i s  given by 

Hh w i l l  denote a set  

- me 

(uh,vh) = Aj(uh) j (vh) j ( 3 . 1 )  
J 

with t h e  A j  being the a rea  o f  Pj Cab. Simiarly, t h e  "boundary" 

inner product is  changed so t h a t  t h e  lengths,  Lj,B, a r e  the  lengths 

along dah. 
- 

We define now two new f i n i t e  difference operators, Kh 

I I 

and 

(3.2) 

( 3 . 3 )  
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' .  
j 

I 

1 .  

where 

be .specified later. 

IJ is a positive number which must satisfy requirements to 

It will be useful to prove a slightly different version of the 

second identity". 11 

Lemma 3.1 If K is symmetric positive, then 

(uh,zhuh)h + (uh,ghuh)% = (uh,Guh>h + (uh,puh)Bh +T% (uj -uk) 2 

'j,k 
j,k) 

(3.4) 

indicates a sum over every (j,k) pair where xj is F where 

connected to Xk' 

Proof: Using the "second identity" for Kh and I$.-, equation 

( 2 . 2 2 ) ,  we have 

j,k) 

The last two terms cancel. For the other term we have 

which completes the proof. 
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Lemma 3.1 immediately assures the existence and uniqueness of 

! -  

I 

a so lu t ion  for  the  spec ia l  f i n i t e  d i f ference scheme. Using 

qu i ,  = o t o  eliminate uB fmm Khuh = rh f ,  we obtain 
- 

f o r  a l l  X-EHh 
J 

L e t  A be the  matrix of coeff ic ients  of (3.5). 

Lema 3.2 If K is  symmetric pos i t ive ,  then 

has a unique so lu t ion  on 

Proof: The hypothesis implies t h a t  

Hh. 

By Lemma 3.1 A has pos i t ive  d e f i n i t e  symmetric pa r t ,  and hence 

i s  non-singular. Thus (3.5) defines uh uniquely on Hh. 

Also it w i l l  be noted that  t he  "second ident i ty"  of Lemma 3.1 

w i l l  give the  same a p r i o r i  bounds fo r  I/uhllh and IlUhllB, as given 

by ( 2 . 2 5 )  and (2 .26) .  

3 .2  Convergence of Special  F in i te  Difference Scheme 

We w i l l  now show t h a t  the spec ia l  f i n i t e  difference scheme 

converges t o  a smooth solution, under a number of hypotheses 

given i n  t h e  theorem. The theorem a l s o  includes a l l  t h e  hypotheses 

needed t o  assure convergence of t he  i t e r a t i v e  matrix solut ion.  



45 

Though qui te  a number of requirements are  given, there  a re  only 

two es sen t i a l  r e s t r i c t ions ,  namely, t h a t  the  areas Aj must be 

nearly uniform, and t h a t  M can be spec i f ied  on a modified 

boundary i n  such a way t h a t  p remains pos i t ive  de f in i t e .  

Theorem 3.1 Suppose t h a t  u€C2(z) s a t i s f i e s  

Ku = f on R 

Mu = 0 on 

where K i s  symmetric posit ive.  For any h >. 0, l e t  Oh be an 

approximation t o  R,  and l e t  Hh be a corresponding s e t  of mesh 

points  with maximum distance h between connected nodes, and 

a l s o  with Lj,k, Lj,B, and Ix - xj l  for xEP 

It is  assumed t h a t  the following hypotheses a r e  s a t i s f i e d :  

a l l  l e s s  than h. j 

(i) There ex i s t s  K 1  > 0, independent of h, such t h a t  fo r  

every P we have h2/A. < K1. 
j J 

(ii) There ex i s t s  K2 > 0, independent of h, such t h a t  a l l  

Pj with any point a t  a distance grea te r  than Kzh from a R  a re  

equal rectangles.  

(iii) There ex i s t s  K3 > 0, independent of h, such t h a t  fo r  

a l l  x&h, the  distance from x t o  dO i s  l e s s  than K3h. 

( i v )  There ex i s t s  K4 > 0, such t h a t  M can be extended so 

as t o  s a t i s f y  a uniform Lipschitz condition a t  a l l  points  a t  a 

distance l e s s  than K4 from an. 

(v )  Rh i s  such t h a t  p = M + j3 has pos i t ive  d e f i n i t e  

symmetric p a r t  on ai$.-,. 
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( v i )  Let W be the  s e t  of points  t h a t  a r e  a distance l e s s  

than Kq from an. Then a, G, and f a r e  a l l  extended t o  be 

defined on R U W with a E C 2 ( R  U W) and G pos i t ive  d e f i n i t e  on 

nuw. 
(v i i )  There ex i s t s  Kg > 0, independent of h, such t h a t  a l l  

points ,  x associated with a boundary polygon, Pj, a re  i n  the 

polygon, and a t  a s u f f i c i e n t  distance, 2 j ,B,  from any bounaary 

J'  

node, xB, of Pj SO that  Aj < KsLj,gZj ,~.  

( v i i i )  Ei ther  RhC R or e l s e  u can be extended so t h a t  

ucc2 (zh)  * 

( i x )  CI > q%pB + d, where d > 0 and pB = sup p(n*s(x) ) ,  
x€n u w 

where n i s  any u n i t  vector and v i s  the  maximum number of 

nodes connected t o  any one node. 

(x )  IAj/Ak - lli= db(lf)?/(v2cr2h), for a11 connected nodes, 

and xk, where i s  the smallest  eigenvalue of G i n  Eh, and xj 

h '  = min(2j,k).  

( x i )  The length of dRh i s  uniformly bounded. 

Let % be the  unique solution t o  

Qh = rhf 

then 

Ituh -rhul1 =O(hv) as k*o, f o r  any pos i t i ve  v < 1 /2  



W e  have 

hence 

In  checking the  proof of Theorem 2 . 1  we see  t h a t  

i s  t h e  same as 

holds f o r  t h i s  term:, 

rhKu - Khrhu 

Khwh (Theorem 2 . 1 ) ,  hence t h e  bound of (2.49) 

L e t  J1 denote the  s e t  of subscripts f o r  

equal rectangles,  and l e t  J2 denote the  

When j€J1 we have only t h e  t e r m  

Because of t he  rectangular arrangement of 

C ( u j  
k 

Taylor series analysis t o  show t h a t  

those P which a re  

r e s t  of t he  subscr ipts .  

j 

- % ) l 2 j , k  t o  consider. 

points  w e  can use a 
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so  t h a t  

(3.10) 

On the  other hand, when j€J2 we cannot do as w e l l .  However, we 

note t h a t  both ( u j  -Uk)/zj,k and ( u j  - uB)/zj,k 

bounded s ince u has a bounded der ivat ive.  Also, by hypothesis 

are uniformly 

= O(h), so t h a t  
J E  2 

It i s  assumed, of course, t ha t  t he  number of nodes connected t o  

any one node i s  bounded as k*o. 

Now, using (3.10) and (3.11) i n  (3 .9 )  w e  have 

ll(zh - Kh)l'hUllh = O(h (3 .12)  

Taking th i s  together w i t h  (3.8) i n  ( 3 . 7 )  f i n a l l y  

We have 

(3.14) 
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We can e s t ab l i sh  a bound, since 

The first and las t  t e r m  on the r i g h t  a r e  of order h, s ince  u is  

d i f f e ren t i ab le  and 11pII and IIpII are bounded. By hypothesis ( i v )  

M s a t i s f i e s  a Lipschitz condition, and s o  does u. Since t h e  

dis tance from XB t o  all i s  less than K3h by (iii) and 

Mu = 0 on ail, we see t h a t  I(p - pj,B)uBI = O(h). Since, by 
j , B  

is uniformly bounded, w e  have 

Also 

= O(h2) (3.16) 

This shows t h a t  

(3.17) 

We check now t o  see that llwhllh and llwhl]% are bounded, We 

have, using t h e  a p r i o r i  bound for IIuh(lh, 

(3.18) 
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which must be bounded s ince f and u are.  In  the  same manner, 

IIwh/lBh must be bounded. 

and (3.17)  i n  (3 .6)  we have 

U s i n g  t h i s  f a c t  together with (3.13) 

Using now (3.19) i n  (3 .6)  we get (/whl(h = O( 

t he  process as many times as needed we ge t  

(3.19) 

3/8) and by repeating 

lbhllh = O(hV), for any pos i t ive  v < 1/2 ( 3 . 2 0 )  

3.3  Convergence of t h e  Matrix I t e r a t i v e  Solution 

For the i t e r a t i v e  solution of the matrix equation Au = f 

we w i l l  s p l i t  A i n t o  a block diagonal pa r t  D, and off diagonal 

p a r t  B. (We w i l l  suppress the subscr ipt  h on the f i n i t e  

difference so lu t ion  uh.) Thus, from ( 3 . 5 ) ,  the  jth block of D 

i s  an r X r matrix, 

D. J = A.G.  J J  +I"- ' j ,k  1 +I j , Bp j , B 

k B 

and a typ ica l  block element of B i s  

and A = D + B. The i t e r a t i v e  method i s  given by 

where u(O) i s  a rb i t r a ry .  The hypotheses of Theorem 3.1 assure 

the  convergence of u ( ~ )  t o  U .  
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Theorem 3 . 2  For any h > 0, l e t  Rh and Hh s a t i s f y  the  hypotheses 

of Theorem 3.1. L e t  be an arbEtrary vector defined on Hh, 

and l e t  {U(~’>;=O be a sequence defined recursively by 

U (i+l) = -D‘ lBU( i )  + D - l f  

Then l i m  u ( ~ )  = u, where 

Proof - By the  contraction mapping theorem it i s  su f f i c i en t  t o  show 

tha t  llD-lBll < 1 for  some matrix norm. Let v be an a rb i t r a ry  

vector defined on Hh, and l e t  w = D-lBv. Since Dw = Bv, we 

Au = f .  
i- 

have 

c 

This l a s t  inequal i ty  follows from the  f a c t  t h a t  

(w,Hv) 2 $ (w,Hw) + 1 (v,Hv) 
2 
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f o r  any pos i t ive  d e f i n i t e  Hermitian matrix. We see t h a t  

(uAjJ / (2 j , k )  I - Lj,kPj,k i s  pos i t ive  de f in i t e ,  s ince  

by (i) and (ix) . 
a l l  the  w terms 

(3.22) 

By rearranging the  terms of (3.21) so as t o  have 

on the  l e f t  and a l l  the  v terms t o  the  r igh t ,  

we obtain 

The las t  expression was  obtained by interchanging j and k, 

s ince  

W e  can write (3.23) i n  the following form. 

(3.24) 
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a ( A k  - A . )  

A j Z j , k  

or 

(w,xw> + (w,Yw> s (v,Yv> + (v,zv> (3.25) 

where X ,  Y, and Z are matrices defined by (3.24).  

We have already shown tha t  Y i s  pos i t i ve  d e f i n i t e  (using 

(3.22));  hence w e  can def ine a norm by 

(3.26) 2 
IIVlly = ( V , W  

We w i l l  show t h a t  D-lB is a s t r i c t  contract ion i n  the  Y norm. 

F i r s t  w e  w i l l  need some inequal i t ies .  We have 

< Ak - - 1I" - 
A j  h '  

by ( i)  and ( i x ) ,  s o  t h a t  

(3.27) 

(3.28) 

Also (w,Yw) can be bounded below, s ince  

by (i) and (ix): Thus, we have 

Finally,  s ince  

(3.29) 
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we have 

where A = m a x  I % / A ~  - 1 1 ,  f o r  a l l  connected nodes, x 

From t h e  def in i t ion  (3.26), and using (3.27) and (3.28) w e  have 

and xk. 
j 

(w,xw) + (w,Yw) > ( 1 + - Ti) rlwlr; 

On t h e  other hand from (3.29) and (3.30) 

(v,Yv) + (v,zv) < 1 1 + $ (4 rlvlr; 

Subst i tut ing (3,31) and (3.32) i n  (3.25) we have 

(3.31) 

(3.32) 

(3.33) 

Since w = D-lBv, and v is  arb i t ra ry ,  we see t h a t  lID'lBlly < 1 

since  

W' 
q202 

A < - (5) (3.34) 

by hypothesis (x) . This completes the  proof of Theorem 3.2. 

Of course, i f  Rh can be se lec ted  s o  t h a t  a l l  t he  A a re  J 
equal, then hypothesis (x) i s  sa t i s f i ed ,  and 

(3.35) 

I n  the  spec ia l  case where a l l  the  
Pj are equal rectangles,  

= 4, so tha t  
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(3.36) 



APPLICATZON TO THE TRICOMI EQUATION 
/ 

4.1  Transonic Gas Dynamics Problem 

An example of a problem of physical  s ignif icance can be 

drawn from t h e  f i e l d  of  gas dynamics. A stream function i s  

introduced such t h a t  derivatives of t he  stream function a re  

ve loc i t i e s  of the gas.  The stream function s a t i s f i e s  a second 

order p a r t i a l  d i f f e ren t i a l  equation which i s  e l l i p t i c  where the  

flow i s  subsonic, and hyperbolic where the  flow i s  supersonic. 

The equation i s  of mixed type, then, fo r  a transonic flow problem. 

When the  equation is  l inearized by means of a hodagraph t r ans -  

formation, and after a further transformation, the  Tricomi equa- 

t i o n  r e su l t s ,  

where F(y)  i s  a continuous monotone f inc t ion  such t h a t  

fo r  y # 0. 

Bers [ll]. A solut ion fqr (4.1) f o r  a region R which includes 

yF(y) > 0 

Details of t h e  derivation of (4.1) a r e  given by 

a port ion of t he  x-axis i s  determined by proper boundary value 

data  along portions of an. The proper boundary value data i s  

known only fo r  spec ia l  cases.  

data i s  the  value of the function over p a r t  of t he  boundary. 

Usually the  appropriate boundary 

If 

56 
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t he  boundary data i s  suf f ic ien t ly  smooth, we can transform the  

homogeneous equation with non-homogeneous boundary conditions t o  

a non-homogeneous equation sa t i s fy ing  homogeneous boundary condi- 

t ions .  The problem can be s t a t ed  i n  t h e  following form then, 

where a or b or both may be zero on p a r t  of &. It is  

possible,  also,  t h a t  the  stronger condition &p/ds = &)/an  = 0 

may be imposed on some portion of 

4.2 

an. 

Tricomi Equation i n  Symmetric Posi t ive Form 

It i s  desired t o  express (4 .2 )  as a system of first order 

d i f f e r e n t i a l  equations. Following Friedrichs; ,  we can do t h i s  

by l e t t i n g  ul = q,, I+ = cp,, and u = [i). U s i n g  t h e  compati- 

b i l i t y  condition, 'pyx = cp,, we have 

This equation is  symmetric, but not posi t ive,  s ince G = 0. To 

make (4 .3)  symmetric posi t ive,  we can multiply by a 2 X 2 matrix, 

B. In  order t o  keep the coeff ic ient  matrices of &/ax and 

au/ay symmetric, B must be of the  form 

B = 

where b and c a r e  functions of x and y. 

(4 .4)  



Equation (4.3) can now be expressed i n  symmetric posi t ive 

form by 

Ku = f on R 

where 

(4.5) 

For t h e  proper choice of f'unctions b and c, G w i l l  be pos i t ive  

de f in i t e ,  resu l t ing  i n  symmetric pos i t ive  K. The spec i f ic  choice 

of b and c depends on t h e  shape of R and on the  boundary 

conditions which a r e  specified.  

It i s  possible that B may be singular i n  0,  however, t h i s  

does 110 harm i f  'B 

4 .3  Admissible Boundary Conditions 

i s  singular only along a l i n e .  

Let n = (%,ny) be the outer normal along do. Then 

p = n 'a or 
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Friedrichs ii] noted t h a t  the quadratic form u -  pu may be 

From t h i s  we can eas i ly  specify the  boundary matrix, p, so that 

admissible boundary conditions result. Let p be defined so that 

O f  course p i s  non-negative def in i te .  u s o ,  q(p - p)ev(p + p )  = R ~ ,  

s o  t h a t  t h e  boundary condition Mu = (p - p )  u = O  i s  admissible. 

Thus we can always obtain admissible boundary conditions. How- 

ever, s ince b ' and c can be chosen subject  only t o  the  con- 

s t r a i n t  t ha t  G is  pos i t ive  def ini te ,  we can have a wide var ie ty  

of possible  boundary conditions. 

The ac tua l  boundary conditions for  cp are  determined by the  

s igns of b+ + c%, b2 - c2F(y), and r$ - F ( y ) g .  

e l l i p t i c  pa r t  of 52, y < 0, we have 

b2 - c2F(y) > 0, and r$ - F(y)nc > 0, s o  t h a t  t he  boundary 

condition is  determined solely by the  s ign of 

Suppose t h a t  b% + c y ,  X 0. Then 

For the  

F(y)  < 0; hence both 

bnx + cny. 
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so t h a t  Mu = 0 implies nyul = nxu2. In  terms of cp t h i s  means 

t h a t  (px/cpy = %/% = -(dy/ds)/(dx/ds), where y = y ( s ) ,  x = x(s )  

a r e  boundary coordinates as a f'unction of a rc  length, s, along 

&. Hence 

(4.11) 

so' t h a t  cp i s  constant along when b+ + c% < 0 i n  the  

e l l i p t i c  region. On the other hand, i f  b+ + c % >  0, we have 

(4.12) 

s o  t h a t  Mu = 0 implies that bul + C U ~  = 0, so t h a t  dcp/dp = 0, 

where p is  i n  some non-tangential direct ion.  Thus, f o r  the  

e l l i p t i c  region we generally have a s ingle  boundary condition 

corresponding t o  the  usual e l l i p t i c  type of boundary condition. 

I n  t h e  hyperbolic region the boundary conditions depend on 

whether the  magnitude of t he  boundary slope is  grea te r  than, l e s s  

than, o r  equal t o  the  magnitude of t he  slope of the cha rac t e r i s t i c  

curve. For equation (4.2), t h e  charac te r i s t ics  s a t i s f y  t h e  d i f f e r -  

e n t i a l  equation 

Suppose t h a t  t h e  boundary i s  tangent t o  a charac te r i s t ic ,  then 

(4.13) 
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(4.14) 

S.I,;~~CS~ that  E =ort ion of 

so  t h a t  5 = d m  5. Then, from (4.8) 

an is  a l e f t  running charac te r i s t ic ,  

2n. 
(4.15) 

A 

Suppose t h a t  t h i s  port ion of 

+ > 0, then, i f  

dcp/ds = 0, but i f  

i s  imposed. Similarly,  along a r i g h t  running charac te r i s t ic ,  

t he  same types of boundary conditions a r e  determined by t h e  s ign 

of b + c d m .  

is  a r i g h t  boundary, s o  t h a t  

b < c d m ,  equation (4.11) holds and 

b > cdm, p = p and no boundary condition 

1 

2 If t h e  boundary i s  not charac te r i s t ic ,  we have 4 > F(y)% 

i f  t h e  magnitude of the boundary slope i s  l e s s  than the  magnitude 

of the cha rac t e r i s t i c  slope, and v ice  versa.  Thus, t he  pa r t i cu la r  

boundary condition is determined by the s igns of a l l  three terms, 

I$ - F(y)n$, b2 - c2F(y), and b& + eny. 

The various boundary conditions implied by a choice of b 

and c are summarized i n  Table I. It can be seen t h a t  there  

i s  considerable choice i n  t h e  type of boundary which can be 

spec i f ied  by the proper choice of t he  functions b and c .  
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Boundary condition 

- -  dq - 0 
ds 

- -  dq - 0 
dP 

TABLE I. - SUMMARY OF BOUNDARY CONDITIONS 
I. , I 

Condition on b and c 

bn, + cny < 0 

bn, + cny > 0 

ioundary condition 

none 

none 

Hyperbolic par t  of a ( y  > 0 )  

'Type of boundary 

ny= d G b x , n x >  0 

n2 <F(y.)n: Y 

n2 <F(y)n: Y 

Conditions on b and c 

b2 > c2F(y) 

b 2 >  c2F(y) 

b2 < c2F (y) 

b2 <c2F(y) 

b2 > c2F(y) 

b2> c2F(y) 

b2 < c2F(y) 

b2< c2F(y) 

and 

and 

and 

and 

and 

and 

and 

and 

bnx +cny > 0 

bn,+cn < O  

bn, + c%> 0 

bnx + cny 0 

bn, + c%>O 

bn, + eny < 0 

Y 

bn, +en > O  Y 

bn, + cny < 0 

Note: p denotes the  'distanc'e i n  some non-tangential  d i rec t ion .  
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4.4 Sample Problem 

A simple choice of b and c which will result in G being 

positive definite in 

c = co, 

Then 

R, if F'(y) > 0, is 

b = -bo - blx, bl > 0 

in R I blF(Y) 
F' (Y) 

where co > - 
(4.16) 

which is obviously positive definite. 

To show the type of boundary conditions which may result, 

consider the case F(y) = y, so that 

blY + co 
(4.18) 

The characteristics in this case satisfy one of the equations 

(4.19) 

which can be solved to obtain the characteristic equation, 

y3 = ; (x - xo)2 
where xo is the point on the x-axis intersected by the 

characteristic. 

&.an illustration, suppose that R is the region shown in 

figure 2, which is bounded by two characteristics in the hyper- 

bolie region and by a curve satisfying 5 <[(bo + blx)/cO] nx 
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t 

I 
Type of boundary Boundary 

condition 

r3 ny - - 6 n x  None 

Figure 2. - Region, Q, for a Tricomi problem. 
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i n  the  e l l i p t i c  region. It i s  assumed t h a t  bO/bl is chosen 

l a rge  enough s o  t h a t  the  parabola (blx + bo)2 = c&f 

t o  t h e  l e f t  of $2, as indicated i n  f igure  2. The boundary condi- 

t i o n  i s  dcp/ds = 0 fo r  the  e l l i p t i c  portion, 

rl, of 

t i o n  on the other character is t ic ,  l3. 

problem. Variations a re  possible w i t h  F2 and r3 replaced by 

severa l  charac te r i s t ics .  This type of problem is  discussed by 

Bers  [ll], p. 88. 

l i e s  en t i r e ly  

an, and for one character is t ic ,  r2, with no boundary condi- 

This is  known as a Tricomi 

It i s  worthwhile noting tha t  t he  so lu t ion  obtained by the  

f i n i t e  difference solut ion of the  synnnetric pos i t ive  form of the  

Tricomi equation consis ts  of derivatives of t he  stream function, 

which corresponds t o  ve loc i t ies  i n  the  physical problem. Hence, 

even though we have a convergence rate which i s  l e s s  than 0(h1I2), 

it is  e s sen t i a l ly  equivalent t o  a convergence rate of 0(h3/2) 

i f  t he  or ig ina l  second order equation were solved d i r ec t ly  fo r  

t he  stream function. 



CHAPTER v 
A NUMEXICAL EXAMPLE 

5.1 Description of Problem 

A numerical solut ion t o  a Tricomi equation was calculated 

using the  f i n i t e  difference scheme of Chapter 11. The accuracy 

of the  solut ion was checked by using a problem fo r  which an 

ana ly t ica l  solut ion i s  known. 

The Tricomi equation can be put i n  symmetric pos i t ive  form 

as indicated i n  t h e  l a s t  chapter, as given by equations (4.5) 

and (4 .6 ) .  The region R chosen i s  indicated i n  f igure  3 .  

The choice of b and c a re  

I b = - 3 - x  

c = 2  

which gives b, = -1, and b = cx = c = 0. We choose F(y)  = y. 

Using t h i s  i n  (4.6) we have 

Y Y 

( 5 . 2 )  

which i s  pos i t ive  de f in i t e  i n  R .  

We now check t o  see what t h e  admissible boundary conditions 

a re  from Table I. For the  hyperbolic p a r t  of Sl(y > 0 ) ,  we need 

66 
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Figure 3. Region for numerical example. 

0, -1) 
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l-2 

r3 

r4 

r5 

2 2  ' 2  t o  know the  s ign of b & c y = ( x  + 3') 

see tha t  b2 > c2y i n  R, hence, s ince b < 0 i n  R ,  we have 

- + c& < -b i n  R .  From Table I, we have dcp/ds = 0 on rl 

and no boundary conditions on r5. For t he  e l l i p t i c  pas t  of 

R(y < 0) we need t o  check the  s ign  of b 5  + c?. Along r2 
we have 

along F2. Hence, t he  admissible boundary condition along r2 
i s  dcp/ds = 0. Next w e  check r3. Then nx = 0 and ny = -1, 

and bn, + cny = -2 < 0, so t h a t  dcp/ds = 0 along l'3. Final ly ,  

along bnx + c 5  = x + 3 = 2 > 0, 

s ince x = -1. Hence dcp/dp = 0 along F4, where p is  some 

non-tangential d i rec t ion .  To f ind  the  spec i f i c  direct ion,  we go 

back t o  equation (4 .12)  which holds i n  t h i s  case. 

Mu = 0 implies t h a t  bul + cu2 = -2cpx+2cpy = 0 or cp, = 

Hence p i s  i n  a d i rec t ion  sloping downward a t  45 . W e  summarize 

the  boundary conditions: 

- 4y. From f igure 3 we 

5=1,5= 0, so tha t  b% + cny = - (x  + 3)  < 0 

r4, % = -1, 5 = 0, giving 

We see that 

'PY' 
0 

Boundary Condition 

9 = 0  

9 x 0  

* =  0 

'px - 'py 

ds 

ds 

ds 
- 

None . 
A simple, but non-trivial  f i nc t ion  sa t i s fy ing  these boundary ' 

conditions i s  eas i ly  obtained by choosing a function which i s  

zero along Pl, r2, P3, and P4, with the  normal der ivat ive a l s o  
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zero along r4. These requirements a re  met by 

cp(x,y) = ( X  + 1 ) 2 ( ~  - l ) ( y  + 1)(4y3 - 9(x - 1)2) (5.3) 

m-e function fl i s  determined by calculat ing yqn - cpw = fl, 

which gives 

f l (x ,y)=  y ( y + 1 ) [ ( 4 y 3  - 9 ( x  -1) 2 ( 6 x + 2 )  -18(x2 -1) (7x  - 1 ) l  

- 2 4 ( ~ + 1 ) ~ ( x -  l ) y ( 2 y + 1 )  (5.4) 

The functions f o r  which we a re  solving a re  then 

(5.5)  
= (x  +1) ( y +  1)[ (4y3 - 9(x  - 1 ) 2 ) ( 3 ~  -1) - l S ( x + l ) ( x  -1)2] 

=(x -k1)2(x - 1) [16y3 + 12y2 - 9(x -1)2 1 
VX 

TY 
and from (4.6) w e  have 

We need t o  evaluate the  matrix p along a l l  boundaries, with 

p defined by equation (4.9)  .' A straightforward calculat ion gives 

the  following values for i. 
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Boundary 
segment 

1 r 

r2 

r3 

r4 

r5 
* 

CL 

This gives the  information necessary t o  ca lcu la te  t he  coef- 

f i c i e n t s  of t h e  f i n i t e  difference equation, which is  

+ 2 L j , w j , p j  + A.G.u J J j  = A . f  J j  ELj, k kp j , k'k B 
(5.8) 

Equation (5.8) holds fo r  every mesh point, x j ,  i n  t he  set  of mesh 

points .  For simplici ty  a uniform mesh was used, as indicated i n  

f igure  4. It w i l l  be noted tha t  mesh points outside of R were 

used. A solut ion was calculated f o r  two d i f f e ren t  mesh spacings, 

h = 0.2 and h = 0.1. The f i n i t e  difference equation was solved 

i n  each case by the  block t r idiagonal  algorithm mentioned i n  

sect ion 2.5. Since the  ana ly t ica l  solution, u, is  given by (5.5) 

we can calculate  lluh - rhullhy as w e l l  a s  t h e  maximum value over 

a l l  mesh points of the maximum component of the e r ror .  
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Figure 4. - Mesh point arrangement for numerical example. 
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5 .2  Description of Numerical Results 

Theorem 2 . 1  assures us of e s sen t i a l ly  0(h1I2) convergence i n  

t h e  L2 norm. Unfortunately t h i s  does not assure us of point-  

w i s e  convergence. A s  indicated i n  the proof of Theorem 2.1,  t he  

f i n i t e  difference equations can be expected t o  be less accurate 

when t h e  polygons, P j ,  a r e  not uniform rectangles.  

case i n  the  numerical example. 

t he  hyperbolic boundary segments, rl and rs. In  going from 

t h e  coarse mesh ( h  = 0 .2 )  t o  the f i n e  mesh (h  = O.l), t he  L2 

e r ro r  was reduced from 6.06 t o  5.30 which is  not unreasonable 

with the  0 ( d 2 )  convergence ra%e. 

ac tua l ly  increased from 33.5 t o  60.9 indicat ing pointwise diver- 

gence. The horizontal  l i n e  (y = 0.75) along which t h e  f i n i t e  

difference so lu t ion  fo r  the  f i n e r  mesh has the  poorest agreement 

with t h e  ana ly t ica l  solut ion is p lo t t ed  i n  f igure  5. It i s  seen 

t h a t  t h e  f i n i t e  difference solution has la rge  osc i l l a t ions  with 

a " w i l d "  point a t  t h e  end of the l i n e .  

This was t h e  

The r e s u l t  was poor accuracy near 

However, t he  maximum e r ro r  

A l l  t h i s  i s  not qui te  as bad as  it seems, though, s ince LE 

convergence with pointwise divergence means t h a t  t h e  divergent 

points  w i l l  occur as  sharp peaks. Therefore, it, can be expected 

t h a t  a smoothing operation would give grea t  improvement i n , t h e  

results. With t h i s  i n  mind, a simple smoothing procedure was 

t r i e d .  Since most smoothing methods a re  fo r  one-dimensional 

functions, the  solut ion w a s  smoothed by l i nes ,  first along v e r t i c a l  
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?o 

20 : 

- Analytical solution 
o Finite difference solution 

0 

3 

0 

0 

-%L--L_I_I_-Ll - 1 . - d -  I 1. . I J - - - J  

- . b  - . 4  - .2  0 . 2  . 4  . 6  
x coordinate 

(b) cpy 

Figure 5. - Analytical and finite difference solutlons for y - 0.75. 
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l i n e s  and then along horizontal l i n e s .  The method of smoothing 

used i s  s i m i l a r  t o  a method suggested by Hamming, p. 314, [12]. 

If it i s  desired t o  smooth equally spaced data, (y$ we can k=l’ 

define the  smoothed data, {:& E=l, by 

- yk-l + 2yk + yk+l , fo r  k =  2,3, . . ., n - 1 - 
yk - 4 

The result of applying th i s  smoothing procedure t o  the 

solut ion based on t h e  f i n e r  gr id  ( h  = 0.1) was  t o  reduce the  

e r ro r  from 5.30 t o  2.07. The m a x i m u m  e r ror  w a s  reduced from 

60.9 t o  13.8. 

t h e  maximum e r ro r  f o r  a mesh point i n  R was 6.4. The -rove- 

ment obtained by t h i s  smoothing procedure i s  indicated by f igure  6 ,  

which shows the  horizontal  l i n e  with poorest agreement after 

smoothing. 

horizontal  l i n e  i s  shown i n  figure 7 .  

L2 

This maximum error w a s  a t  a point  lying outside of $2, 

The solut ion a f t e r  smoothing along a more typ ica l  

It should be emphasized that t h e  smoothing procedure used here 

was  very simple and t h a t  most l i k e l y  b e t t e r  r e s u l t s  could be 

obtained with other smoothing methods. 

gives several  smoothing methods, both l o c a l  and global  (through the  

use of truncated Fourier s e r i e s ) .  

For example, Lanczos [13], 
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- Analytical solution 
0 Finite difference solution after smoothing 

0 

0 

-20: 
I 

-ML J I .I 1 - L L  1_-L _L-_L-  - l . . L - L  2 

-. 6 -. 4 -. 2 0 . 2  .4  .6 
x coordinate 

(b) wy. 
Figure 6. - Analytical and smoothed finite difference solutions for y 0.75. 
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Analytical solution 
o Finite difference solution after smoothing 

I - 10 

-5' ' ' I ' I ' ' ' I ' I ' I ' ' L U  

-1 -. 8 -. 6 -. 4 -. 2 0 . 2  . 4  . 6  . a  1 
x coordinate 

(b) py 

Figure 7. - Analytical and smoothed finite difference solutions for y = -0.25. 
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